K-KAT® 670 Non-tin Catalyst for Silanes

K-KAT 670 is a non-tin catalyst designed for moisture cure coatings, adhesives, sealants and elastomers based on silane terminated polymers. It is an environmentally-friendly alternative to tin catalysts in the following silane systems:

	✓ Methoxysilanes	✓ Ethoxysilanes		✓ Oximinosilanes		
		✓ Acetoxy	vsilanes	✓ SPUR		
K-KAT® 67	0 Advantages					
V Eff	fective alternative to tin ca	atalysts	V Provides	comparable th	rough dry to tin catalysts	

- **V** Superior catalysis of ethoxysilanes
- **V** Achieves equal or better mechanical properties to tin

K-KAT 670 is an effective catalyst option for replacing tin in commonly used methoxysilane terminated moisture cured sealants. It also has superior performance in ethoxysilane polymers in comparison to tin as shown in **Table 1**.

Table 1. Degree of Dryness, hours*

* hours to pass Erichsen Dryness Degree 7: no tack or impression after applying 20 kg load

	DMS	TMS	DES	SPUR	Acetoxy
No Catalyst	24+	24+	120+	24+	6.5+
Tin Catalyst	5.5	5.0	120+	2	2
K-KAT 670	6.0	6.0	7.0	3	3

dimethoxysilane (DMS), trimethoxysilane (TMS), diethoxysilane (DES), silyl terminated polyurethane (SPUR)

Table 2. DMS Mechanical Properties

2 Week Ambient Cure

	Tin Catalyst	K-KAT 670	
Shore A	52.0	52.0	
Stress at max, psi	356.0	370.3	
Strain at max, %	297.0	332.4	
Modulus, psi	153.4	210.7	

Mechanical Testing - Instron

K-KAT 670 achieves equivalent or improved mechanical properties to tin as shown in **Table 2** of a dimethoxysilane system.

K-KAT[®] 670 Incorporation

Recommended dosage is 0.5% with a 2.0% max loading on total formula weight. Efficient cure can be achieved with low catalyst load in combination with an equal dose of 3-aminopropy-triethoxy silane. K-KAT 670 should be added with planetary mixing to reduce exposure to moisture. Product should be stored in a cool, dry environment.

Contact Information

Global Headquarters Tech. Service, R&D, & Sales King Industries, Inc. 1 Science Rd. Norwalk, CT 06852, USA Phone: 1-203-866-5551 **European Tech. Sales Office** King Industries, International Science Park 402 1098 XH Amsterdam The Netherlands Phone: 31 20 723 1970

Asia-Pacific Tech. Sales Office Synlico Tech Co., Ltd. 42 Ju Lin Ya Yuan RichMond Hill (Juhaoyuan) Zhongshan, China Phone: 86 760 88229866

www.kingindustries.com

